Pagina's

2013/07/18

Nth Root & Power

/*  Nth Root, Nth Power
  


     ____
 \n /                                 Input: integers x >= 0 , n > 0
  \/  x  = r                         Output: integer  r, such that r^n <= x < (r+1)^n
                               
 
Examples: 27^(1/3)=3, 26^(1/3)=2

           3th root 1234567890
                    1 234 567890
                    1 ... ......
           3th root 1=1
                   (1+1)*10=20
                    1 234 ......
                     (2*20 + 1234/20^2)/3
                     (2*20 + 12  /2 ^2)/3=14
                     (2*14 + 1234/14^2)/3=11
                     (2*11 + 1234/11^2)/3=10
                     (2*10 + 1234/10^2)/3=10
           3th root 1 234=10
                   (10+1)*100=1100
                    1 234 567890
                     (2*1100 + 1234567890/1100^2)/3
                     (2*1100 + 123456    /11  ^2)/3=1073
                     (2*1073 + 1234567890/1073^2)/3=1072
                     (2*1072 + 1234567890/1072^2)/3=1072
 
The remainder is one step more, one multiplication (and a subtraction),
in the last step 1072^2 is computed,
so the remainder is 1234567890-(1072^2)*1072
 
Finding roots involves finding powers.
The POW function is updated (the thirth power of an 1.000.000 bits number
is found ~20 times faster). It calls MTP_XP(Xint X, Xint P), which splits
a large P in pieces with X's bitlength, so fast multiplication can be used.
At the bottom a few versions of POW can be found, iterative and recursive, 
bitwise scanning the exponent from left to right or vice versa.
POWrRL, recursive, scans from R to L, fastest, POW is based on it.
POWiLR, iterative, marginally slower.
POWiRL, slow, why?
POWstd, standard System.Numerics.BigInteger.Pow method.
 
Abbreviations:
 NR      Nth Root
 PR      Partial Root, called by NR
 POW     Power
 MTP_XP  Multiply, see above, called by POW
 DIV     Division, returns quotient, calls DQR
 DQR     Division, returns quotient and remainder (Burnikel & Ziegler)
 bL      bitLength
 SR      Square Root & Remainder, SR(10)=3 R=1 (Zimmermann)
 SRO     Square Root Only, SRO(10)=3
 RND     Random number
 
 |---------------------------------------------------------------------------------------------------|
 |                                Times(in ms, Athlon X4, XP, 2GB)                                   |
 |-------------------------------------||------------------------------------------------------------|
 |                                     ||               RND of 1.000.000 bits                        |
 |------------|------------|-----------||----|------------|-----------|------------------------------|                           
 |   bits RND | POW(RND,3) | NR(RND,3) ||  n | POW(RND,n) | NR(RND,n) |  Using Square Root           |
 |------------|------------|-----------||----|------------|-----------|------------------------------|
 |     10.000 |       1    |      1    ||  2 |     160    |     840   |  187 SRO(RND)                |
 |     20.000 |       4    |      3    ||  3 |     550    |    1180   |                              |
 |     50.000 |       8    |     20    ||  4 |     618    |     777   |  261 SRO(SRO(RND))           |
 |    100.000 |      20    |     67    ||  5 |    1550    |     849   |                              |
 |    200.000 |      57    |    143    ||  6 |    1310    |    1130   |  602 NR(SRO(RND),3)          |
 |    500.000 |     213    |    414    ||  7 |    2440    |    1490   |                              |
 |  1.000.000 |     550    |   1200    ||  8 |    1790    |     908   |  291 SRO(SRO(SRO(RND)))      |
 |  2.000.000 |    1630    |   3120    ||  9 |    3300    |     868   |                              |
 |  5.000.000 |    6020    |   7860    || 10 |    3070    |    1050   |  537 NR(SRO(RND),5)          |
 | 10.000.000 |   15500    |  19700    || 11 |    4970    |    1090   |                              |
 |            |            |           || 12 |    3370    |    1360   |  410 NR(SRO(SRO(RND)),3)     |
 |            |            |           || 13 |    5700    |    1310   |                              |
 |            |            |           || 14 |    5150    |    1358   |  639 NR(SRO(RND),7)          |
 |            |            |           || 15 |    7870    |    1550   | 1010 NR(NR(RND,5),3)         |
 |            |            |           || 16 |    5020    |    1040   |  303 SRO(SRO(SRO(SRO(RND)))) |
 |            |            |           || 17 |   10400    |     750   |                              |
 |------------|------------|-----------||----|------------|-----------|------------------------------|
  
Reference: Modern Computer Arithmetic (Version 0.5.9 of 7 October 2010),
           Richard Brent and Paul Zimmermann, Cambridge University Press, 2010.
           (On-line book! (1.5.2 kth root))     
*/

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Xint = System.Numerics.BigInteger;
class Nth_Root_Power
{
    private static Xint NR(Xint X, int y)                 // Nth Root
    {
        int sr_X = (bL(X) - 1) / y * y - y;               // shift right
        Xint R0 = 1;
        int n = 1;
        while (sr_X >= 0)
        {
            R0++;
            R0 = PR(X >> sr_X, R0, n, y);
            n *= 2;
            sr_X -= n * y;
        }
        sr_X += n * y;
        if (sr_X == 0) return R0;
        R0++;
        R0 = PR(X, R0, sr_X / y, y);
        return R0;
    }
    private static Xint PR(Xint X, Xint R0, int n, int y) // Partial Root
    {
        Xint S, Z, T;
        S = R0 << n;
        Z = POW(R0, y - 1);
        T = (y - 1) * S + DIV((X >> (y - 1) * n), Z);
        R0 = T / y;
        do
        {
            S = R0;
            Z = POW(S, y - 1);
            T = (y - 1) * S + DIV(X, Z);
            R0 = T / y;
        }
        while (R0 < S);
        return S;
    }

    private static Xint POW(Xint X, int y)
    {
        if (y > 1) return ((y & 1) == 0) ? SQ(POW(X, y / 2)) : MTP_XP(X, SQ(POW(X, y / 2)));
        return y == 0 ? 1 : X;
    }
    private static Xint MTP_XP(Xint X, Xint P)
    {
        int n = bL(X);
        if (n <= 7500) return X * P;
        Xint Mask = (Xint.One << n) - 1;
        Xint T = MTP(X, P & Mask, n);
        P >>= n;
        int s = n;
        while (P > 0)
        {
            T += MTP(X, P & Mask, n) << s;
            P >>= n;
            s += n;
        }
        return T;
    }

    #region
    private static Stopwatch sw = new Stopwatch();
    static void Main()
    {
        Xint X = RND(1000000);
        if (NR(X, 15) != NR(NR(X, 5), 3)) Console.WriteLine("WRONG");
        sw.Restart();
        NR(NR(X, 5), 3);
        sw.Stop();
        Console.WriteLine(sw.ElapsedMilliseconds);
        sw.Restart();
        NR(X, 15);
        sw.Stop();
        Console.WriteLine(sw.ElapsedMilliseconds);
        X = RND(500000);
        X = SQ(X); //X++; //X--;
        if (NR(X, 16) != SRO(SRO(SRO(SRO(X))))) Console.WriteLine("WRONG");
        int i, j = 1;
        sw.Restart();
        for (i = 0; i < j; i++)
            SRO(SRO(SRO(SRO(X))));
        sw.Stop();
        Console.WriteLine(sw.ElapsedMilliseconds);
        sw.Restart();
        for (i = 0; i < j; i++)
            NR(X, 16);
        sw.Stop();
        Console.WriteLine(sw.ElapsedMilliseconds);
        Console.ReadLine();
    }

    private static Xint[] SR(Xint A)
    {
        return SR(A, bL(A));
    }
    private static Xint[] SR(Xint A, int n)
    {
        if (n < 53) return SR52(A);
        int m = n >> 2;
        Xint Mask = (Xint.One << m) - 1;
        Xint A0 = A & Mask; A >>= m;
        Xint A1 = A & Mask; A >>= m;
        Xint[] R = SR(A, n - (m << 1));
        Xint[] D = DQR(R[1] << m | A1, R[0] << 1);
        R[0] = (R[0] << m) + D[0];
        R[1] = (D[1] << m | A0) - SQ(D[0], m);
        if (R[1] < 0)
        {
            R[0] -= 1;
            R[1] += (R[0] << 1) | 1;
        }
        return R;
    }
    private static Xint[] SR52(Xint A)
    {
        double a = (double)A;
        long q = (long)Math.Sqrt(a);
        long r = (long)(a) - q * q;
        Xint[] QR = { q, r };
        return QR;
    }

    private static Xint SRO(Xint A)
    {
        return SRO(A, bL(A));
    }
    private static Xint SRO(Xint A, int n)
    {
        if (n < 53) return (int)Math.Sqrt((double)A);
        Xint[] R = SROr(A, n, 1);
        return R[0];
    }
    private static Xint[] SROr(Xint A, int n, int rc) // rc=recursion counter
    {
        if (n < 53) return SR52(A);
        int m = n >> 2;
        Xint Mask = (Xint.One << m) - 1;
        Xint A0 = A & Mask; A >>= m;
        Xint A1 = A & Mask; A >>= m;
        Xint[] R = SROr(A, n - (m << 1), rc + 1);
        Xint[] D = DQR((R[1] << m) | A1, R[0] << 1);
        R[0] = (R[0] << m) + D[0];
        rc--;
        if (rc != 0)
        {
            R[1] = (D[1] << m | A0) - SQ(D[0], m);
            if (R[1] < 0)
            {
                R[0] -= 1;
                R[1] += (R[0] << 1) | 1;
            }
            return R;
        }
        n = (bL(D[0]) << 1) - bL(D[1] << m | A0);
        if (n < 0) return R;
        if (n > 1)
        {
            R[0] -= 1;
            return R;
        }
        int shift = (bL(D[0]) - 31) << 1;
        long d0 = (int)(D[0] >> (shift >> 1));
        long d = (long)((D[1] >> (shift - m)) | (A0 >> shift)) - d0 * d0;
        if (d < 0)
        {
            R[0] -= 1;
            return R;
        }
        if (d > d0 << 1) return R;
        R[0] -= (1 - (((D[1] << m) | A0) - SQ(D[0], m)).Sign) >> 1;
        return R;
    }

    private static int bL(Xint U)
    {
        byte[] bytes = (U.Sign * U).ToByteArray();
        int i = bytes.Length - 1;
        return i * 8 | bitLengthMostSignificantByte(bytes[i]);
    }
    private static int bitLengthMostSignificantByte(byte b)
    {
        return b < 08 ? b < 02 ? b < 01 ? 0 : 1 :
                                 b < 04 ? 2 : 3 :
                        b < 32 ? b < 16 ? 4 : 5 :
                                 b < 64 ? 6 : 7;
    }

    private static int fL2(int i)
    {
        return
        i < 1 << 15 ? i < 1 << 07 ? i < 1 << 03 ? i < 1 << 01 ? i < 1 << 00 ? -1 : 00 :
                                                                i < 1 << 02 ? 01 : 02 :
                                                  i < 1 << 05 ? i < 1 << 04 ? 03 : 04 :
                                                                i < 1 << 06 ? 05 : 06 :
                                    i < 1 << 11 ? i < 1 << 09 ? i < 1 << 08 ? 07 : 08 :
                                                                i < 1 << 10 ? 09 : 10 :
                                                  i < 1 << 13 ? i < 1 << 12 ? 11 : 12 :
                                                                i < 1 << 14 ? 13 : 14 :
                      i < 1 << 23 ? i < 1 << 19 ? i < 1 << 17 ? i < 1 << 16 ? 15 : 16 :
                                                                i < 1 << 18 ? 17 : 18 :
                                                  i < 1 << 21 ? i < 1 << 20 ? 19 : 20 :
                                                                i < 1 << 22 ? 21 : 22 :
                                    i < 1 << 27 ? i < 1 << 25 ? i < 1 << 24 ? 23 : 24 :
                                                                i < 1 << 26 ? 25 : 26 :
                                                  i < 1 << 29 ? i < 1 << 28 ? 27 : 28 :
                                                                i < 1 << 30 ? 29 : 30;
    }

    private static int seed;
    private static Xint RND(int n)
    {
        if (n < 2) return n;
        if (seed == int.MaxValue) seed = 0; else seed++;
        Random rand = new Random(seed);
        byte[] bytes = new byte[(n + 15) >> 3];
        rand.NextBytes(bytes);
        int i = bytes.Length - 1;
        bytes[i] = 0;
        n = (i << 3) - n;
        i--;
        bytes[i] >>= n;
        bytes[i] |= (byte)(128 >> n);
        return new Xint(bytes);
    }

    private static Xint SQ(Xint U)
    {
        return SQ(U, U.Sign * U.ToByteArray().Length << 3);
    }
    private static Xint SQ(Xint U, int n)
    {
        if (n <= 700) return U * U;
        if (n <= 3000) return Xint.Pow(U, 2);
        if (n <= 6000) return SQ2(U, n);
        if (n <= 10000) return SQ3(U, n);
        if (n <= 40000) return SQ4(U, n);
        return SQ2P(U, n);
    }
    private static Xint SQr(Xint U, int n)
    {
        if (n <= 3000) return Xint.Pow(U, 2);
        if (n <= 6000) return SQ2(U, n);
        if (n <= 10000) return SQ3(U, n);
        return SQ4(U, n);
    }
    private static Xint SQ2(Xint U1, int n)
    {
        n >>= 1;
        Xint U0 = U1 & ((Xint.One << n) - 1); U1 >>= n;
        Xint P0 = SQr(U0, n);
        Xint P2 = SQr(U1, n);
        return ((P2 << n) + (SQr(U0 + U1, n) - (P0 + P2)) << n) + P0;
    }
    private static Xint SQ3(Xint U2, int n)
    {
        n = (int)((long)(n) * 0x55555556 >> 32);
        Xint Mask = (Xint.One << n) - 1;
        Xint U0 = U2 & Mask; U2 >>= n;
        Xint U1 = U2 & Mask; U2 >>= n;
        Xint W0 = SQr(U0, n);
        Xint W4 = SQr(U2, n);
        Xint P3 = SQr((((U2 << 1) + U1) << 1) + U0, n);
        U2 += U0;
        Xint P2 = SQr(U2 - U1, n);
        Xint P1 = SQr(U2 + U1, n);
        Xint W2 = (P1 + P2 >> 1) - (W0 + W4);
        Xint W3 = W0 - P1;
        W3 = ((W3 + P3 - P2 >> 1) + W3) / 3 - (W4 << 1);
        Xint W1 = P1 - (W4 + W3 + W2 + W0);
        return ((((W4 << n) + W3 << n) + W2 << n) + W1 << n) + W0;
    }
    private static Xint SQ4(Xint U3, int n)
    {
        n >>= 2;
        Xint Mask = (Xint.One << n) - 1;
        Xint U0 = U3 & Mask; U3 >>= n;
        Xint U1 = U3 & Mask; U3 >>= n;
        Xint U2 = U3 & Mask; U3 >>= n;
        Xint W0 = SQr(U0, n);                                   //  0
        U0 += U2;
        U1 += U3;
        Xint P1 = SQr(U0 + U1, n);                              //  1
        Xint P2 = SQr(U0 - U1, n);                              // -1
        U0 += 3 * U2;
        U1 += 3 * U3;
        Xint P3 = SQr(U0 + (U1 << 1), n);                       //  2
        Xint P4 = SQr(U0 - (U1 << 1), n);                       // -2
        Xint P5 = SQr(U0 + 12 * U2 + ((U1 + 12 * U3) << 2), n); //  4
        Xint W6 = SQr(U3, n);                                   //  inf
        Xint W1 = P1 + P2;
        Xint W4 = (((((P3 + P4) >> 1) - (W1 << 1)) / 3 + W0) >> 2) - 5 * W6;
        Xint W2 = (W1 >> 1) - (W6 + W4 + W0);
        P1 = P1 - P2;
        P4 = P4 - P3;
        Xint W5 = ((P1 >> 1) + (5 * P4 + P5 - W0 >> 4) - ((((W6 << 4) + W4) << 4) + W2)) / 45;
        W1 = ((P4 >> 2) + (P1 << 1)) / 3 + (W5 << 2);
        Xint W3 = (P1 >> 1) - (W1 + W5);
        return ((((((W6 << n) + W5 << n) + W4 << n) + W3 << n) + W2 << n) + W1 << n) + W0;
    }
    private static Xint SQ2P(Xint A, int n)
    {
        n >>= 1;
        Xint[] U = new Xint[3];
        U[0] = A & ((Xint.One << n) - 1); A >>= n; U[2] = A; U[1] = U[0] + A;
        Xint[] P = new Xint[3];
        Parallel.For(0, 3, (int i) => P[i] = SQr(U[i], n));
        return ((P[2] << n) + P[1] - (P[0] + P[2]) << n) + P[0];
    }

    private static Xint MTP(Xint U, Xint V)
    {
        return MTP(U, V, Xint.Max(U.Sign * U, V.Sign * V).ToByteArray().Length << 3);
    }
    private static Xint MTP(Xint U, Xint V, int n)
    {
        if (n <= 3000) return U * V;
        if (n <= 6000) return TC2(U, V, n);
        if (n <= 10000) return TC3(U, V, n);
        if (n <= 40000) return TC4(U, V, n);
        return TC2P(U, V, n);
    }
    private static Xint MTPr(Xint U, Xint V, int n)
    {
        if (n <= 3000) return U * V;
        if (n <= 6000) return TC2(U, V, n);
        if (n <= 10000) return TC3(U, V, n);
        return TC4(U, V, n);
    }
    private static Xint TC2(Xint U1, Xint V1, int n)
    {
        n >>= 1;
        Xint Mask = (Xint.One << n) - 1;
        Xint U0 = U1 & Mask; U1 >>= n;
        Xint V0 = V1 & Mask; V1 >>= n;
        Xint P0 = MTPr(U0, V0, n);
        Xint P2 = MTPr(U1, V1, n);
        return ((P2 << n) + (MTPr(U0 + U1, V0 + V1, n) - (P0 + P2)) << n) + P0;
    }
    private static Xint TC3(Xint U2, Xint V2, int n)
    {
        n = (int)((long)(n) * 0x55555556 >> 32); // n /= 3;
        Xint Mask = (Xint.One << n) - 1;
        Xint U0 = U2 & Mask; U2 >>= n;
        Xint U1 = U2 & Mask; U2 >>= n;
        Xint V0 = V2 & Mask; V2 >>= n;
        Xint V1 = V2 & Mask; V2 >>= n;
        Xint W0 = MTPr(U0, V0, n);
        Xint W4 = MTPr(U2, V2, n);
        Xint P3 = MTPr((((U2 << 1) + U1) << 1) + U0, (((V2 << 1) + V1 << 1)) + V0, n);
        U2 += U0;
        V2 += V0;
        Xint P2 = MTPr(U2 - U1, V2 - V1, n);
        Xint P1 = MTPr(U2 + U1, V2 + V1, n);
        Xint W2 = (P1 + P2 >> 1) - (W0 + W4);
        Xint W3 = W0 - P1;
        W3 = ((W3 + P3 - P2 >> 1) + W3) / 3 - (W4 << 1);
        Xint W1 = P1 - (W4 + W3 + W2 + W0);
        return ((((W4 << n) + W3 << n) + W2 << n) + W1 << n) + W0;
    }
    private static Xint TC4(Xint U3, Xint V3, int n)
    {
        n >>= 2;
        Xint Mask = (Xint.One << n) - 1;
        Xint U0 = U3 & Mask; U3 >>= n;
        Xint U1 = U3 & Mask; U3 >>= n;
        Xint U2 = U3 & Mask; U3 >>= n;
        Xint V0 = V3 & Mask; V3 >>= n;
        Xint V1 = V3 & Mask; V3 >>= n;
        Xint V2 = V3 & Mask; V3 >>= n;

        Xint W0 = MTPr(U0, V0, n);                               //  0
        U0 += U2; U1 += U3;
        V0 += V2; V1 += V3;
        Xint P1 = MTPr(U0 + U1, V0 + V1, n);                     //  1
        Xint P2 = MTPr(U0 - U1, V0 - V1, n);                     // -1
        U0 += 3 * U2; U1 += 3 * U3;
        V0 += 3 * V2; V1 += 3 * V3;
        Xint P3 = MTPr(U0 + (U1 << 1), V0 + (V1 << 1), n);       //  2
        Xint P4 = MTPr(U0 - (U1 << 1), V0 - (V1 << 1), n);       // -2
        Xint P5 = MTPr(U0 + 12 * U2 + ((U1 + 12 * U3) << 2),
                       V0 + 12 * V2 + ((V1 + 12 * V3) << 2), n); //  4
        Xint W6 = MTPr(U3, V3, n);                               //  inf

        Xint W1 = P1 + P2;
        Xint W4 = (((((P3 + P4) >> 1) - (W1 << 1)) / 3 + W0) >> 2) - 5 * W6;
        Xint W2 = (W1 >> 1) - (W6 + W4 + W0);
        P1 = P1 - P2;
        P4 = P4 - P3;
        Xint W5 = ((P1 >> 1) + (5 * P4 + P5 - W0 >> 4) - ((((W6 << 4) + W4) << 4) + W2)) / 45;
        W1 = ((P4 >> 2) + (P1 << 1)) / 3 + (W5 << 2);
        Xint W3 = (P1 >> 1) - (W1 + W5);
        return ((((((W6 << n) + W5 << n) + W4 << n) + W3 << n) + W2 << n) + W1 << n) + W0;
    }
    private static Xint TC2P(Xint A, Xint B, int n)
    {
        n >>= 1;
        Xint Mask = (Xint.One << n) - 1;
        Xint[] U = new Xint[3];
        U[0] = A & Mask; A >>= n; U[2] = A; U[1] = U[0] + A;
        Xint[] V = new Xint[3];
        V[0] = B & Mask; B >>= n; V[2] = B; V[1] = V[0] + B;
        Xint[] P = new Xint[3];
        Parallel.For(0, 3, (int i) => P[i] = MTPr(U[i], V[i], n));
        return ((P[2] << n) + P[1] - (P[0] + P[2]) << n) + P[0];
    }

    private static Xint DIV(Xint A, Xint B)
    {
        Xint[] QR = DQR(A, B);
        return QR[0];
    }
    private static Xint[] DQR(Xint A, Xint B)
    {
        int n = bL(B);
        int m = bL(A) - n;
        if (m <= 6000) return SmallDivRem(A, B);
        int signA = A.Sign; A *= signA;
        int signB = B.Sign; B *= signB;
        Xint[] QR = new Xint[2];
        if (m <= n) QR = D21(A, B, n);
        else
        {
            Xint Mask = (Xint.One << n) - 1;
            m /= n;
            Xint[] U = new Xint[m];
            int i = 0;
            for (; i < m; i++)
            {
                U[i] = A & Mask;
                A >>= n;
            }
            QR = D21(A, B, n);
            A = QR[0];
            for (i--; i >= 0; i--)
            {
                QR = D21(QR[1] << n | U[i], B, n);
                A = A << n | QR[0];
            }
            QR[0] = A;
        }
        QR[0] *= signA * signB;
        QR[1] *= signA;
        return QR;
    }
    private static Xint[] SmallDivRem(Xint A, Xint B)
    {
        Xint[] QR = new Xint[2];
        QR[0] = Xint.DivRem(A, B, out QR[1]);
        return QR;
    }
    private static Xint[] D21(Xint A, Xint B, int n)
    {
        if (n <= 6000) return SmallDivRem(A, B);
        int s = n & 1;
        A <<= s;
        B <<= s;
        n++;
        n >>= 1;
        Xint Mask = (Xint.One << n) - 1;
        Xint B1 = B >> n;
        Xint B2 = B & Mask;
        Xint[] QR1 = D32(A >> (n << 1), A >> n & Mask, B, B1, B2, n);
        Xint[] QR2 = D32(QR1[1], A & Mask, B, B1, B2, n);
        QR2[0] |= QR1[0] << n;
        QR2[1] >>= s;
        return QR2;
    }
    private static Xint[] D32(Xint A12, Xint A3, Xint B, Xint B1, Xint B2, int n)
    {
        Xint[] QR = new Xint[2];
        if ((A12 >> n) != B1) QR = D21(A12, B1, n);
        else
        {
            QR[0] = (Xint.One << n) - 1;
            QR[1] = A12 + B1 - (B1 << n);
        }
        QR[1] = (QR[1] << n | A3) - MTP(QR[0], B2, n);
        while (QR[1] < 0)
        {
            QR[0] -= 1;
            QR[1] += B;
        }
        return QR;
    }

    private static Xint POWstd(Xint X, int y) // standard
    {
        return Xint.Pow(X, y);
    }
    private static Xint POWrRL(Xint X, int y) // recursive Right to Left 
    {
        if (y > 1) return ((y & 1) == 0) ? SQ(POWrRL(X, y / 2)) : SQ(POWrRL(X, y / 2)) * X;
        return y == 0 ? 1 : X;
    }
    private static Xint POWiRL(Xint X, int y) // iterative Right to Left
    {
        Xint P = 1;
    L0: if ((y & 1) == 1) P *= X;
        y /= 2;
        if (y == 0) return P;
        X = SQ(X);
        goto L0;
    }
    private static Xint POWiLR(Xint X, int y) // iterative Left to Right
    {
        switch (y)
        {
            case 0: return 1;
            case 1: return X;
            case 2: return SQ(X);
            default:
                Xint P = SQ(X);
                for (int i = fL2(y) - 1; i > 0; i--)
                {
                    if (((y >> i) & 1) != 0) P *= X;
                    P = SQ(P);
                }
                return (y & 1) == 0 ? P : P * X;
        }
    }
    #endregion
}

Pascal's triangle



// Horizontal row in Pascal's triangle

using System;
class Pascal_Triangle_Horizontal_Row
{
    private static int[] fr(int n)            // full row
    {                                         // 0=>{1} 1=>{1,1} 2=>{1,2,1} 3=>{1,3,3,1} ...
        int i = 0, j = n / 2, k = 1;
        int[] c = new int[n + 1];
        c[0] = 1;
        for (; i < j; i++, k++)
            c[k] = c[i] * (n - i) / k;
        for (i = 0; n > i; i++, n--)
            c[n] = c[i];
        return c;
    }

    private static int[] pfr(int[] d)         // previous full row
    {                                         // ...=>{1,3,3,1}=>{1,2,1}=>{1,1}=>{1}=>{}=>{} 
        int n = d.Length - 2;
        if (n < 0)
            return new int[] { };
        int i = 1, m = n / 2;
        int[] c = new int[n + 1];
        c[0] = 1;
        for (; i <= m; i++)
            c[i] = d[i] - c[i - 1];
        for (i = 0; n > i; i++, n--)
            c[n] = c[i];
        return c;
    }

    private static int[] nfr(int[] b)         // next full row
    {                                         // {}=>{1}=>{1,1}=>{1,2,1}=>{1,3,3,1}=>...
        int i = 1, n = b.Length, m = n / 2;
        int[] c = new int[n + 1];
        c[0] = 1;
        for (; i <= m; i++)
            c[i] = b[i - 1] + b[i];
        for (i = 0; n > i; i++, n--)
            c[n] = c[i];
        return c;
    }

    private static int[] hr(int n)            // half row
    {                                         // 0=>{1} 1=>{1} 2=>{1,2} 3=>{1,3} 4=>{1,4,6} ...
        int i = 0, j = n / 2, k = 1;
        int[] c = new int[j + 1];
        c[0] = 1;
        for (; i < j; i++, k++, n--)
            c[k] = c[i] * n / k;
        return c;
    }

    private static int[] phr(int[] d)         // previous half row
    {                                         // ...=>{1,4,6}=>{1,3}=>{1,2}=>{1}=>{}=>{}
        if (d.Length < 2)
            return new int[] { };
        int i = 1, n = (d[1] + 1) / 2;
        int[] c = new int[n];
        c[0] = 1;
        for (; i < n; i++)
            c[i] = d[i] - c[i - 1];
        return c;
    }

    private static int[] nhr(int[] b)         // next half row
    {                                         // {}=>{1}=>{1,2}=>{1,3}=>{1,4,6}=>...
        switch (b.Length)
        {
            case 0: return new int[] { 1 };
            case 1: return new int[] { 1, 2 };
            default:
                int i = 1, b1 = b[1], n = (b1 + 3) / 2;
                b1 &= 1;
                int[] c = new int[n--];
                c[0] = 1;
                for (; i < n; i++)
                    c[i] = b[i] + b[i - 1];
                c[i] = (1 - b1) * b[i - 1] + (1 + b1) * b[i - b1];
                return c;
        }
    }

    static void Main()
    {
        int[] c = new int[] { };              // 1
        for (int i = 0; i < 9; i++)           // 1 1
        {                                     // 1 2 1
            c = nfr(c);                       // 1 3 3 1
            foreach (int j in c)              // 1 4 6 4 1
                Console.Write(j + " ");       // 1 5 10 10 5 1
            Console.WriteLine();              // 1 6 15 20 15 6 1      
        }                                     // 1 7 21 35 35 21 7 1   
        Console.ReadLine();                   // 1 8 28 56 70 56 28 8 1
    }
}