/*
The next terms are:
F(177416979) with 54 consecutive zeros,
198423144 56
275354607 58
Next one will be larger than 3*10^8, presumable 18*10^8.
Computed with a new silent cheap PC.
CPU: AMD Phenom II X4 965, 3.4 GHz (fastest in GMP benchmarks)
RAM: 8 GB
OS: Debian 6.0.6 (Squeeze) Kernel Linux 2.6.32-5-amd64
GMP: 5.1.0
GCC: 4.4.5
IDE: MonoDevelop 2.4
Results: Fibonacci(10^9) in 12 seconds, factorial(32*10^6) 30 seconds,
both using 1 core, what will happen with a parallel version of Karatsuba?
The C code below is about two times faster than the C++ code before,
probably because a 64 bits system is used instead of a 32 bits one,
most time is spent adding big numbers, with 64 bits it should be
about two times faster, shouldn't it?
Is it possible to approximate the chance which Fibonacci number, F(n),
has a record number of consecutive zeros, z?
For larger values of n it seems to be.
Suppose we write the numbers as a long binary string.
F1=1, F2=1, F3=10, F4=11, F5=101, F6=1000, ...
The long binary string ends with: ...1000 101 11 10 1 1
How many bits are there from F1 up to Fn?
F1 F1? 0.7 * 1
F1 F2? 0.7 * (1+2)
F1 F3? 0.7 * (1+2+3)
F1 F4? 0.7 * (1+2+3+4)
F1 Fn? 0.7 * n * (n+1) / 2
How many coin flips on average does it take to get z consecutive heads?
Answer: 2^(z+1) - 2
So: 2^(z+1) - 2 = 0.7 * n * (n+1) / 2
For larger values of z (and n):
n ~ 2.40 * 2^(z/2)
z ~ 2.89 * ln(n) - 2.53
n cz(F(n)) 2.89*ln(n)-2.53
3 1 1
6 3 3
12 4 5
19 5 6
38 6 8
42 7 8
68 12 10
243 13 13
384 14 15
515 16 16
740 19 17
1709 24 19
5151 27 22
11049 28 24
45641 30 28
94729 31 31
185610 34 33
644593 35 36
726681 39 36
2296396 40 40
3098358 42 41
6178778 43 43
15743325 45 45
22436908 48 46
80141430 49 50
84300971 51 50
127495932 53 51
177416979 54 52
198423144 56 53
275354607 58 54
Conclusion:
A218076 seems to have properties of a random sequence.
Of course it isn't a random sequence, the terms are the:
Lowest positive indices of Fibonacci numbers whose binary
expansions have record numbers of consecutive zeros.
And...it's getting harder and harder to find new ones.
The next term, with 59 consecutive zeros, will be
~6.6 times larger than the last term found (50% chance).
*/
#include <stdio.h>
#include <gmp.h>
#include <time.h>
int lz(unsigned char b)
{
return b < 1 << 4 ? b < 1 << 2 ? b < 1 << 1 ? 7 : 6 :
b < 1 << 3 ? 5 : 4 :
b < 1 << 6 ? b < 1 << 5 ? 3 : 2 :
b < 1 << 7 ? 1 : 0;
}
int tz(unsigned char b)
{
return 7 - lz((unsigned char)(b & -(char)b));
}
time_t rawtime;
struct tm * timeinfo;
char buffer[80];
void printTime()
{
time( &rawtime);
timeinfo = localtime(&rawtime);
strftime (buffer, 80, "%c", timeinfo);
puts(buffer);
}
void main ()
{
int i, i0, i1, j, k, z, zmax, size;
printf(" low: "); scanf("%d", &i0);
printf("high: "); scanf("%d", &i1);
printf("zmax: "); scanf("%d", &zmax);
k = (zmax - 6) / 8;
mpz_t F0, F1;
mpz_init(F0); mpz_init(F1);
printTime();
printf(" compute F(%d)\n", i1);
mpz_fib_ui(F0, i1);
mpz_set(F1, F0);
printTime();
printf(" compute F's(%d & %d)\n", i0 - 2 , i0 - 1);
mpz_fib2_ui(F1, F0, i0 - 1);
printTime();
printf("enter a number: "); scanf("%d", &i);
printTime();
printf(" S T A R T \n");
unsigned char *p , *q;
for(i = i0; i <= i1; i++)
{
if(i % 100000 == 0)
{
printTime();
printf("F(%d)\n", i);
}
mpz_add(F0,F0,F1);
p = (unsigned char *)F0[0]._mp_d;
j = 1;
if (*p == 0)
{
for (z = 8, p++, j++; *p == 0; p++, j++, z += 8);
if (zmax < z + 7)
{
z += tz(*p);
if (zmax < z)
{
zmax = z;
k = (z - 6) / 8;
printTime();
printf(" LOWZS: %d F(%d) \n", z, i);
}
}
}
size = mpz_sizeinbase(F0, 256);
for (j += k, p += k; j < size; j += k, p += k)
{
if (*p == 0)
{
for (z = 8, q = p - 1; *q == 0; q--, z += 8);
for (p++, j++; *p == 0; p++, j++, z += 8);
if (zmax < z + 14)
{
z += lz(*q);
if (zmax < z + 7)
{
z += tz(*p);
if (zmax < z)
{
zmax = z;
k = (z - 6) / 8;
printTime();
printf(" ZEROS: %d F(%d) ZEROS \n", z, i);
}
}
}
}
}
mpz_swap(F0, F1);
}
printTime();
printf(" R E A D Y\n");
printf("enter a number: "); scanf("%d", &i);
printTime();
printf(" compute F(%d)\n", i1);
mpz_fib_ui(F0, i1);
printTime();
if (mpz_cmp(F0, F1) != 0)
{
printf(" E R R O R\n");
}
else
{
printf(" ZMAX: %d \n", zmax);
}
mpz_clear(F0); mpz_clear(F1);
}