// The next two terms are: // F(80141430) 49 consecutive zeros, and // F(84300971) 51 consecutive zeros // I used Emil Stefanov's wrapper for GMP // (The GNU Multiple Precision Arithmetic Library). // www.emilstefanov.net/Projects/GnuMpDotNet/ // Copied "libgmp-3.dll" to "C:\WINDOWS\System32\" // This general compilation computes F(10^9) in 42 seconds. // Two copies of the program below, for example one // scanning the range 80000000-82000000, the other // scanning the range 82000000-84000000, take ~32 hours. // And... the next term will be larger than 95999999. using System; using System.Threading.Tasks; using Emil.GMP; // Project>>Add Reference>>Emil.GMP.dll class F_cz_gmp { static void Main() { int i = 80000000; // 82000000 int zmax = 48; int[] z = { 0, 0 }; int k = (zmax - 6) / 8; Console.WriteLine("first i: " + i); BigInt[] F = new BigInt[2]; F[1] = BigInt.Fibonacci(i - 1, out F[0]); for (; i < 82000000; i += 2) // 84000000 { if (i % 500000 == 0) Console.WriteLine(i + " " + DateTime.Now); F[0] += F[1]; F[1] += F[0]; Parallel.For(0, 2, (int j) => z[j] = zeros(F[j], zmax, k)); GC.Collect(); if (z[0] > zmax) { zmax = z[0]; k = (zmax - 6) / 8; Console.WriteLine(i + " " + zmax); } if (z[1] > zmax) { zmax = z[1]; k = (zmax - 6) / 8; Console.WriteLine((i + 1) + " " + zmax); } } Console.WriteLine("last i: " + (i - 1) + " " + DateTime.Now); Console.ReadLine(); } private static int zeros(BigInt F, int zmax, int k) { byte[] b = F.ToByteArray(); // F.ToUintArray ~4 times faster int bL = b.Length; int j = 0; int z; if (b[0] == 0) { z = 8; while (b[++j] == 0) z += 8; // add zerobits if (zmax < z + 7) { z += tz(b[j]); if (zmax < z) { zmax = z; k = (z - 6) / 8; } } } j += k; while (j < bL) { if (b[j] == 0) { z = 8; int j0 = j; while (b[--j0] == 0) z += 8; // add zerobits while (b[++j] == 0) z += 8; if (zmax < z + 14) { z += lz(b[j0]); if (zmax < z + 7) { z += tz(b[j]); if (zmax < z) { zmax = z; k = (z - 6) / 8; } } } } j += k; } return zmax; } private static int lz(byte b) // leading zeros, b > 0 { return b < 1 << 4 ? b < 1 << 2 ? b < 1 << 1 ? 7 : 6 : b < 1 << 3 ? 5 : 4 : b < 1 << 6 ? b < 1 << 5 ? 3 : 2 : b < 1 << 7 ? 1 : 0; } private static int tz(byte b) // trailing zeros { return 7 - lz((byte)(b & -(sbyte)b)); } }
C# , System.Numerics, Multiplication, Karatsuba, Toom Cook, Division, Burnikel, Ziegler, Factorial, Luschny, Square Root, Zimmermann, Choose, Binomial Coefficient, Permutation, Combination, Eratosthenes, Primes, Fibonacci, Lucas, Pell, Catalan, Fast Random Number Generator, Overton
2012/11/24
A218076 extended
Subscribe to:
Posts (Atom)