// Binet's formula: // // Fib(n) = ( Phi^n - (-1)^n / Phi^n ) / 5^(1/2) // // Where Phi = (1+5^(1/2))/2 ~ 1.61803398874989484820458683436563811772030917980576....(Knott) // ~ 1.6180339887498948482045868343656381177203+ (Knuth) // // For larger values of n: // // Fib(n) ~ Phi^n / 5^(1/2) // // For the number of bits, x, of Fib(n): // // 2^x ~ Fib(n) ~ Phi^n / 5^(1/2) // // Taking natural logarithms: // // ln(2^x) ~ ln(Phi^n / 5^(1/2)) // // So: // x * ln(2) ~ n * ln(Phi) - 1/2 * ln(5) // x ~ n * ln(Phi)/ln(2) - ln(5)/ln(2)/2 // // Using "windows calculator" which seems to have a precision of ~105 bits ~31 decimal digits: // // x ~ n * 0,6942419136306173017387902668986 - 1,1609640474436811739351597147447 // // A partial bit (digit) is a bit (digit): // // x ~ (int)(n * 0,6942419136306173017387902668986 - 1,1609640474436811739351597147447 + 1) // // The mantissa of a double has a precision of 52 bits ~ 16 decimal digits: // // x = (int)(n * 0,6942419136306173 - 0,1609640474436812) // // Below it is correct for 0 <= n <= 24 * 10^6, after two days the output is: "R E A D Y" // Also for n = 5 * 10^8 it's correct // for n = 10^9 it seems to be correct too. using System; using Xint = System.Numerics.BigInteger; class bitLength_Fibonacci { private static int bL_F(int n) { return n < 6 ? ++n / 2 : (int)(0.6942419136306173 * n - 0.1609640474436812); } static void Main() { Xint[] F = { 0, 1 }; for (int n = 1; n <= 24000000; n++) { F = new Xint[2] { F[1], F[1] + F[0] }; if (bL(F[0]) != bL_F(n)) { Console.WriteLine(n + " " + bL(F[0]) + " " + bL_F(n)); } } Console.WriteLine("R E A D Y"); Console.ReadLine(); } private static int bL(Xint X) { byte[] bytes = (X.Sign * X).ToByteArray(); int i = bytes.Length - 1; return i * 8 | bitLengthMostSignificantByte(bytes[i]); } private static int bitLengthMostSignificantByte(byte b) { return b < 08 ? b < 02 ? b < 01 ? 0 : 1 : b < 04 ? 2 : 3 : b < 32 ? b < 16 ? 4 : 5 : b < 64 ? 6 : 7; } }
C# , System.Numerics, Multiplication, Karatsuba, Toom Cook, Division, Burnikel, Ziegler, Factorial, Luschny, Square Root, Zimmermann, Choose, Binomial Coefficient, Permutation, Combination, Eratosthenes, Primes, Fibonacci, Lucas, Pell, Catalan, Fast Random Number Generator, Overton
2012/09/28
Number of bits Fibonacci number
2012/09/09
Fibonacci sequence binary plot, Ed Pegg Jr.(2003)
At Wolfram Mathworld you can find an intriguing plot of the
Fibonacci sequence represented in binary.
Fibonacci sequence represented in binary.
The one below shows it for small value's,
Fibonacci(5)=5, 101 binary, black, white, black
A larger one:
Fibonacci(1000000000) Challenge in 0.1 ms
// Find the first 10 bytes and the last 10 bytes of f(1_000_000_000). // That's right, fibonacci of one billion. // I suppose the first 80 bits and the last 80 bits are more interesting, // when you try to (dis)prove .... things. // And, if you try, start with small numbers, first bit, last bit, first/last two bits, etc. // By the way, the first bit is always one, // though there is an exception, do you know it? (hint: start with small numbers) // You can find the challenge at: // weblogs.java.net/blog/kabutz/archive/2012/02/24/fibonacci-1000000000-challenge // Or google "fibonacci 1000000000". // My result(using 1 core): // // F(1000000000) // bits: 694241913 // MSB: 01 62 80 B8 2D 8C BE 0E DC 1B // time: 46 us // LSB: A9 53 2D F4 D2 D2 5B 5D B6 3B // time: 46 us // Slightly less than 0.1 ms!!!! // (the conversion of an 80 bits number to a string takes about 2 us, eternal question: // can this conversion be done faster? I'm not going to answer it;) // When the Most Significant Bytes are calculated with a precision of 80 bits, // the lowest 2 or 3 bytes of these MSB's are wrong, if it's doubled to 160 bits, // things look fine, are the same as those of Rex Young, which can be found at: // weblogs.java.net/blog/kabutz/archive/2012/02/24/fibonacci-1000000000-challenge // // Big question: "how to (dis)prove it?" // It probably boils down to "more bits, higher accuracy, analyse the error". // Amazing: MSB's (multiplication of 160 bits numbers) // and LSB's (multiplication of 80 bits numbers) // take nearly the same time. // I started with LowFib, returning the LSB's, // and thought HighFib, returning the MSB's, // would be 4 times slower. // A few ways to speed it up: // -upto a bitlength of 80 bits LowFib and HighFib do the same (iterations). // -in the last iteration F(n) and F(n+1) are computed, get rid of F(n+1) // -don't use a biginteger library, use arrays of uints, // and (Knuth's) classical multiplication algorithm. // -translate it to c (or assembler) // LSB's, 80 bits result from 80 bits multiplied by 80 bits. // Looks like some time can be saved within the classical * algo. // The final digits of fibonacci numbers repeat with a certain cycle length, see: // www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibmaths.html#cycles // Looks like a modulo (remainder) operation. // An underbound for the number of bits of fibonacci(n) is (2*n+1)/3 // Are there better bounds? // FibonacciHighLow(10^12)? The trillionth one. // Use a few longs, it would surprise me if it takes more than 0.2 ms. // !!! Project >> Add Reference >> System.Numerics !!! using Xint = System.Numerics.BigInteger; using System.Diagnostics; using System; class FibonacciHighLow { private static int nob; // number of bits private static Stopwatch sw = new Stopwatch(); static void Main() { for (int n = 1953125; n <= 1000000000; n *= 2) { Console.WriteLine("F(" + n + ")"); string s = hexXint(HighFib(n)); Console.WriteLine("bits: " + nob); Console.WriteLine(" MSB: " + s); HighFib(n); sw.Restart(); for (int i = 0; i < 1000; i++) { HighFib(n); //hexXint(HighFib(n)); } sw.Stop(); Console.WriteLine("time: " + sw.ElapsedMilliseconds + " us"); s = hexXint(LowFib(n)); Console.WriteLine(" LSB: " + s); LowFib(n); sw.Restart(); for (int i = 0; i < 1000; i++) { LowFib(n); //hexXint(LowFib(n)); } sw.Stop(); Console.WriteLine("time: " + sw.ElapsedMilliseconds + " us"); Console.WriteLine(); } Console.ReadLine(); } public static Xint LowFib(int n) { Xint Mask = (Xint.One << 80) - 1; Xint[] F = { 0, 1 }; for (int i = fL2(n); i >= 0; i--) // floorLog2 { Xint L = 2 * F[1] - F[0]; // L is a Lucas Number(2,1,3,4,7,..) switch ((3 << i & n) >> i) { case 0: F = new Xint[2] { L * F[0], L * F[1] - 1 }; break; case 2: F = new Xint[2] { L * F[0], L * F[1] + 1 }; break; case 1: F = new Xint[2] { L * F[1] - 1, L * (F[1] + F[0]) - 1 }; break; case 3: F = new Xint[2] { L * F[1] + 1, L * (F[1] + F[0]) + 1 }; break; } F[0] &= Mask; F[1] &= Mask; } return F[0]; } // To do: // case 0: F[1] = (L * F[1] - 1) & Mask; // if (F[1] < 0) F[1] = Mask; // ???? // Looks like LowFib can be exact. // Test it with small Mask values (decimal 1,3,7,15,.../binary 1,11,111,1111,....) // A few years ago I wrote Knuth's classical division algorithm in TWITS (TWo bITS) // It's quite difficult to test it when bytes, ushorts or uints are used. // With twits it's a lot easier. // Or, even better, don't, because: // mathworld.wolfram.com/FibonacciNumber.html // F(2^n + 2^(n+1)) ends in n+2 zeroes binary. // So 80 zeroes, n=78, 2^78+2^79, F(906.694.364.710.971.881.029.632) ends in 80 zeroes. public static Xint HighFib(int n) { Xint Mask = (Xint.One << 160) - 1; Xint[] F = { 0, 1 }; int i = fL2(n); for (; i >= 0 && bL(F[0]) <= 160; i--) // bitLength { Xint L = 2 * F[1] - F[0]; switch ((3 << i & n) >> i) { case 0: F = new Xint[2] { L * F[0], L * F[1] - 1 }; break; case 2: F = new Xint[2] { L * F[0], L * F[1] + 1 }; break; case 1: F = new Xint[2] { L * F[1] - 1, L * (F[1] + F[0]) - 1 }; break; case 3: F = new Xint[2] { L * F[1] + 1, L * (F[1] + F[0]) + 1 }; break; } } int s = bL(F[0]) - 160; // shift int t = s; // total shift F[0] >>= s; F[1] >>= s; for (; i >= 0; i--) { Xint L = 2 * F[1] - F[0]; if ((1 << i & n) >> i == 0) { F[0] *= L; F[1] *= L; } else { F = new Xint[2] { L * F[1], L * (F[1] + F[0]) }; } t *= 2; s = bL(F[0]) - 160; t += s; F[0] >>= s; F[1] >>= s; } t += bL(F[0]); nob = t; return F[0] >>= 80 + (8 - t & 7); } // mathworld.wolfram.com/FibonacciNumber.html // Edd Pegg Jr.'s plot(2003) might indicate that // repeating zeroes (binary) in Fibonacci Numbers, // in our case 160 zeroes, arise for F(VERY VERY LARGE) private static int fL2(int n) { int i = -1; while (n > 0) { i++; n /= 2; } return i; } private static int bL(Xint X) { byte[] bytes = X.ToByteArray(); int i = bytes.Length - 1; return i * 8 | bitLengthMostSignificantByte(bytes[i]); } private static int bitLengthMostSignificantByte(byte b) { return b < 08 ? b < 02 ? b < 01 ? 0 : 1 : b < 04 ? 2 : 3 : b < 32 ? b < 16 ? 4 : 5 : b < 64 ? 6 : 7; } private static string hexXint(Xint X) { byte[] bytes = X.ToByteArray(); byte[] zeros = new byte[10]; int i = bytes.Length; if (i == 11) i--; for (--i; i >= 0; i--) { zeros[i] = bytes[i]; } string s = zeros[9].ToString("X2"); for (i = 8; i >= 0; i--) { s += " " + zeros[i].ToString("X2"); } return s; } }
Subscribe to:
Posts (Atom)