// Catalan(1.000.000) in 810 ms (Athlon X4 640, XP, 2GB). // Amsterdam University Library thanks, there I read // "Computing Binomial Coefficients" (April 1987!) by P. Goetgheluck. // The blog about binomials (december 2010) has to be updated. // "BNM(uint n, uint k)" chooses the fastest algorithm, BNM1 or BNM3. // If k is small compared to n, BNM1 will be used. // Example: BNM1(12,4)=12!/8!/4!=9*10*11*12/(2*3*4)=9*5*11*6/(3*2) // Otherwise BNM3 will be used, it uses prime power factorization. // A sieve of Eratosthenes "getComposites" returns a BitArray, // and an approximation for the square root of n. // The exact square root is found by "root". // Goetgheluck's algorithm is used in "getBnmPrimes", // to get the power "exp(n,k,p)" of a prime. // A signed integer version "exp(int n, int k, int p)" isn't used, // but ..... is there for it's own sake. // Some care has been taken to work with arrays of uints, ulongs etc as long as possible. // Result: BNM(6.400.000 , 2.133.333) in 3510 ms, that's nearly 10 % faster. using Xint = System.Numerics.BigInteger; using System.Collections.Generic; using System.Threading.Tasks; using System.Collections; using System.Diagnostics; using System; class Binomial { public static Xint CAT(uint n) { return n < 3 ? n / 2 + 1 : n < 11 ? BNM1(n * 2, n++) / n : BNM3(n * 2, n++) / n; } public static Xint BNM(uint n, uint k) { if (k > n) return 0; if (k > n / 2) k = n - k; if (k == 0) return 1; if (k == 1) return n; if (k == 2) return n <= ushort.MaxValue ? n-- * n / 2 : (ulong)(n--) * n / 2; if (k < 11) return BNM1(n, k); if (n <= 64) return BNM3(n, k); if (n <= 128) return k < 12 ? BNM1(n, k) : BNM3(n, k); if (n <= 256) return k < 12 + 5 * (n - 128) / 128 ? BNM1(n, k) : BNM3(n, k); if (n <= 512) return k < 17 + 2 * (n - 256) / 256 ? BNM1(n, k) : BNM3(n, k); if (n <= 1024) return k < 19 + 9 * (n - 512) / 512 ? BNM1(n, k) : BNM3(n, k); if (n <= 2048) return k < 28 + 13 * (n - 1024) / 1024 ? BNM1(n, k) : BNM3(n, k); if (n <= 4096) return k < 41 + 17 * (n - 2048) / 2048 ? BNM1(n, k) : BNM3(n, k); if (n <= 8192) return k < 58 + 31 * (n - 4096) / 4096 ? BNM1(n, k) : BNM3(n, k); if (n <= 16384) return k < 89 + 45 * (n - 8192) / 8192 ? BNM1(n, k) : BNM3(n, k); if (n <= 32768) return k < 134 + 60 * (n - 16384) / 16384 ? BNM1(n, k) : BNM3(n, k); if (n <= 65536) return k < 194 + 88 * (n - 32768) / 32768 ? BNM1(n, k) : BNM3(n, k); if (n <= 131072) return k < 282 + 120 * (n - 65536) / 65536 ? BNM1(n, k) : BNM3(n, k); if (n <= 262144) return k < 402 + 162 * (n - 131072) / 131072 ? BNM1(n, k) : BNM3(n, k); if (n <= 524288) return k < 564 + 229 * (n - 262144) / 262144 ? BNM1(n, k) : BNM3(n, k); if (n <= 1048576) return k < 793 + 312 * (n - 524288) / 524288 ? BNM1(n, k) : BNM3(n, k); if (n <= 2097152) return k < 1105 + 430 * (n - 1048576) / 1048576 ? BNM1(n, k) : BNM3(n, k); if (n <= 4194304) return k < 1535 + 583 * (n - 2097152) / 2097152 ? BNM1(n, k) : BNM3(n, k); if (n <= 8388608) return k < 2118 + 806 * (n - 4194304) / 4194304 ? BNM1(n, k) : BNM3(n, k); if (n <= 16777216) return k < 2924 + (ulong)(1700) * (n - 8388608) / 8388608 ? BNM1(n, k) : BNM3(n, k); if (n <= 33554432) return k < 4624 + (ulong)(2328) * (n - 16777216) / 16777216 ? BNM1(n, k) : BNM3(n, k); if (n <= 67108864) return k < 6952 + (ulong)(3135) * (n - 33554432) / 33554432 ? BNM1(n, k) : BNM3(n, k); if (n <= 134217728) return k < 10087 + (ulong)(4282) * (n - 67108864) / 67108864 ? BNM1(n, k) : BNM3(n, k); return k < 10087 + 4282 * (n >> 13) / 16384 ? BNM1(n, k) : BNM3(n, k); } private static Xint BNM1(uint n, uint k) { ulong uu = 0; Xint U = 0; uint i = n - k + 1; uint u = i; if ((i++ & 1) == 0) { u /= 2; goto L1; } L0: if (i <= n && u <= ushort.MaxValue && i <= ushort.MaxValue) { u *= (i++ / 2); } else { if (i > n) goto M0; else { uu = (ulong)(u) * (i++ / 2); goto L2; } } L1: if (i <= n && u <= ushort.MaxValue && i <= ushort.MaxValue) { u *= i++; goto L0; } else { if (i > n) goto M0; else { uu = (ulong)(u) * i++; goto L3; } } L2: if (i <= n && uu <= uint.MaxValue) { uu *= i++; } else { if (i > n) goto M0; else { U = (Xint)(uu) * i++; goto L4; } } L3: if (i <= n && uu <= uint.MaxValue) { uu *= (i++ / 2); goto L2; } else { if (i > n) goto M0; else { U = (Xint)(uu) * (i++ / 2); goto L5; } } L4: if (i <= n) { U *= (i++ / 2); } else goto M0; L5: if (i <= n) { U *= i++; goto L4; } M0: switch (k) { case 3: if (uu == 0) return u / 3 << 1 - (int)(n & 1); if (U.IsZero) return uu / 3 << 1 - (int)(n & 1); return U / 3 << 1 - (int)(n & 1); case 4: if (uu == 0) return u / 6; if (U.IsZero) return uu / 6; return U / 6; case 5: if (uu == 0) return (u >> (int)(n & 1)) / 15; if (U.IsZero) return (uu >> (int)(n & 1)) / 15; return (U >> (int)(n & 1)) / 15; case 6: if (uu == 0) return u / 90; if (U.IsZero) return uu / 90; return U / 90; case 7: if (U.IsZero) return (uu >> (int)(n & 1)) / 315; return (U >> (int)(n & 1)) / 315; case 8: if (U.IsZero) return uu / 2520; return U / 2520; case 9: if (U.IsZero) return (uu >> (int)(n & 1)) / 11340; return (U >> (int)(n & 1)) / 11340; case 10: if (U.IsZero) return uu / 113400; return U / 113400; case 11: return (U >> (int)(n & 1)) / 623700; case 12: return U / 7484400; case 13: return (U >> (int)(n & 1)) / 48648600; case 14: return U / 681080400; case 15: return (U >> 3 + (int)(n & 1)) / 638512875; case 16: return (U >> 7) / 638512875; case 17: return (U >> 6 + (int)(n & 1)) / 10854718875; case 18: return (U >> 7) / 97692469875; case 19: return (U >> 6 + (int)(n & 1)) / 1856156927625; case 20: return (U >> 8) / 9280784638125; case 21: return (U >> 7 + (int)(n & 1)) / 194896477400625; case 22: return (U >> 8) / 2143861251406875; case 23: return (U >> 7 + (int)(n & 1)) / 49308808782358125; case 24: return (U >> 10) / 147926426347074375; case 25: return (U >> 9 + (int)(n & 1)) / 3698160658676859375; default: Xint V = 3698160658676859375; i = 26; M1: if (i <= k) V *= (i++ / 2); else return (U >> 9 + (int)(n & 1)) / V; if (i <= k) { V *= i++; goto M1; } return (U >> 10) / V; } } private static Xint BNM3(uint n, uint k) { if (n <= 65536) { uint[] f = getBnmPrimes(n, k); int i = f.Length; if (i == 1) return (Xint)(f[0]) << exp(n, k, 2); int j = 1 << fL2(i); uint max = 0; if (i != j) { f = uintSpecialProduct(f, i, j, out max); } for (; j > 1 && max <= ushort.MaxValue; j /= 2) f = uintProduct(f, j, out max); if (j == 1) return (Xint)(f[0]) << exp(n, k, 2); ulong mmax = 0; ulong[] ff = ulongProduct(f, j, out mmax); j /= 2; if (j == 1) return (Xint)(ff[0]) << exp(n, k, 2); Array.Resize(ref f, 0); for (; j > 1 && mmax <= uint.MaxValue; j /= 2) ff = ulongProduct(ff, j, out mmax); if (j == 1) return (Xint)(ff[0]) << exp(n, k, 2); Xint[] F = XintProduct(ff, j); j /= 2; if (j == 1) return F[0] << exp(n, k, 2); Array.Resize(ref ff, 0); for (; j > 1 && F[0].ToByteArray().Length < 376; j /= 2) F = SmallProduct(F, j); for (; j > 1; j /= 2) F = LargeProduct(F, j); return F[0] << exp(n, k, 2); } else { uint[] f = getBnmPrimes(n, k); int i = f.Length; if (i == 1) return (Xint)(f[0]) << exp(n, k, 2); int j = 1 << fL2(i); ulong mmax = 0; ulong[] ff; if (i != j) { ff = ulongSpecialProduct(f, i, j, out mmax); } else { ff = ulongProduct(f, j, out mmax); j /= 2; } if (j == 1) return (Xint)(ff[0]) << exp(n, k, 2); Array.Resize(ref f, 0); for (; j > 1 && mmax <= uint.MaxValue; j /= 2) ff = ulongProduct(ff, j, out mmax); if (j == 1) return (Xint)(ff[0]) << exp(n, k, 2); Xint[] F = XintProduct(ff, j); j /= 2; if (j == 1) return F[0] << exp(n, k, 2); Array.Resize(ref ff, 0); for (; j > 1 && F[0].ToByteArray().Length < 376; j /= 2) F = SmallProduct(F, j); for (; j > 1; j /= 2) F = LargeProduct(F, j); return F[0] << exp(n, k, 2); } } private static uint[] getBnmPrimes(uint n, uint k) { int i; BitArray composite = getComposites(n, out i); uint rt = root(n, i); List<uint> primes = new List<uint>(); int e = exp(n, k, 3); for (i = 0; i < e; i++) primes.Add(3); uint p = 5; i = 0; int j = 0; L0: if (p > rt) { e = (int)(n / 2); goto L1; } if (!composite[i++]) { e = exp(n, k, p); for (j = 0; j < e; j++) primes.Add(p); } p += 2; if (p > rt) { e = (int)(n / 2); goto L2; } if (!composite[i++]) { e = exp(n, k, p); for (j = 0; j < e; j++) primes.Add(p); } p += 4; goto L0; L1: if (p > e) goto L3; if (!composite[i++] && n % p < k % p) primes.Add(p); p += 2; L2: if (p > e) goto L3; if (!composite[i++] && n % p < k % p) primes.Add(p); p += 4; goto L1; L3: p = n - k + 1; p += 1 - (p & 1); p += p % 6 & 2; // if (p % 6 == 3) p += 2; i = (int)(p / 3 - 1); if ((i & 1) != 0) goto L5; L4: if (p > n) goto L6; if (!composite[i++]) primes.Add(p); p += 2; L5: if (p > n) goto L6; if (!composite[i++]) primes.Add(p); p += 4; goto L4; L6: return primes.ToArray(); } private static BitArray getComposites(uint n, out int i) { int len = (int)(n / 3); BitArray composite = new BitArray(len); i = 0; int d1 = 8, d2 = 0, p1 = 3, p2 = 1, s = 7, inc = 10; while (s < len) { if (!composite[i++]) { int j = s, m = s + p1; for (; m < len; j += inc, m += inc) { composite[j] = true; composite[m] = true; } if (j < len) composite[j] = true; } d2 += 8; s += d2; p2 += 8; inc += 4; if (!composite[i++]) { int j = s, m = s + p2; for (; m < len; j += inc, m += inc) { composite[j] = true; composite[m] = true; } if (j < len) composite[j] = true; } d1 += 16; s += d1; p1 += 4; inc += 8; } return composite; } private static uint root(uint n, int i) { uint rt = (uint)(i * 3 + 3); uint sq = rt * rt; for (; sq < n; sq += 2 * rt | 1, rt++) ; for (; sq > n; rt--, sq -= 2 * rt | 1) ; return rt; } private static int exp(uint n, uint k, uint p) { int e = 0; L0: uint qn = n / p; uint qk = k / p; if ((qn - qk) * p > n - k) { e++; n = qn; if (qk == 0) goto L2; k = qk; goto L1; } if (qk == 0) return e; n = qn; k = qk; goto L0; L1: qn = n / p; qk = k / p; if ((qn - qk) * p >= n - k) { e++; n = qn; if (qk == 0) goto L2; k = qk; goto L1; } if (qk == 0) return e; n = qn; k = qk; goto L0; L2: qn = n / p; if (n == qn * p) e++; else return e; n = qn; goto L2; } private static int exp(int n, int k, int p) { int e = 0, rn = 0, rk = 0; L0: n = Math.DivRem(n, p, out rn); k = Math.DivRem(k, p, out rk); if (rk > rn) { e++; if (k == 0) goto L2; goto L1; } if (k == 0) return e; goto L0; L1: n = Math.DivRem(n, p, out rn); k = Math.DivRem(k, p, out rk); if (rk >= rn) { e++; if (k == 0) goto L2; goto L1; } if (k == 0) return e; goto L0; L2: n = Math.DivRem(n, p, out rn); if (rn == 0) e++; else return e; goto L2; } private static uint[] uintSpecialProduct(uint[] f, int i, int j, out uint max) { max = 0; uint p = 0; uint[] newF = new uint[j]; int m = i - j; // ?!?! i = j - m; // ?!?! int n = 0; while (n < i) newF[n++] = f[m++]; i = 0; while (n < j) { p = f[m++] * f[i++]; if (max < p) max = p; newF[n++] = p; } return newF; } private static ulong[] ulongSpecialProduct(uint[] f, int i, int j, out ulong mmax) { mmax = 0; ulong pp = 0; ulong[] newF = new ulong[j]; int m = i - j; i = j - m; int n = 0; while (n < i) newF[n++] = f[m++]; i = 0; while (n < j) { pp = (ulong)(f[m++]) * f[i++]; if (mmax < pp) mmax = pp; newF[n++] = pp; } return newF; } private static uint[] uintProduct(uint[] f, int j, out uint max) { max = 0; uint p = 0; int k = j-- / 2; uint[] newF = new uint[k]; for (int i = 0; i < k; i++, j--) { p = f[i] * f[j]; if (max < p) max = p; newF[i] = p; } return newF; } private static ulong[] ulongProduct(uint[] f, int j, out ulong mmax) { mmax = 0; ulong pp = 0; int k = j-- / 2; ulong[] newF = new ulong[k]; for (int i = 0; i < k; i++, j--) { pp = (ulong)(f[i]) * f[j]; if (mmax < pp) mmax = pp; newF[i] = pp; } return newF; } private static ulong[] ulongProduct(ulong[] ff, int j, out ulong mmax) { mmax = 0; ulong pp = 0; int k = j-- / 2; ulong[] newF = new ulong[k]; for (int i = 0; i < k; i++, j--) { pp = ff[i] * ff[j]; if (mmax < pp) mmax = pp; newF[i] = pp; } return newF; } private static Xint[] XintProduct(ulong[] ff, int j) { int k = j-- / 2; Xint[] NewF = new Xint[k]; for (int i = 0; i < k; i++, j--) NewF[i] = (Xint)(ff[i]) * ff[j]; return NewF; } private static Xint[] SmallProduct(Xint[] F, int j) { int k = j-- / 2; Xint[] NewF = new Xint[k]; for (int i = 0; i < k; i++, j--) NewF[i] = F[i] * F[j]; return NewF; } private static Xint[] LargeProduct(Xint[] F, int j) { int k = j-- / 2; Xint[] NewF = new Xint[k]; for (int i = 0; i < k; i++, j--) NewF[i] = MTP(F[i], F[j]); return NewF; } public static int bL(Xint U) { byte[] bytes = (U.Sign * U).ToByteArray(); int i = bytes.Length - 1; return i * 8 | bitLengthMostSignificantByte(bytes[i]); } private static int bitLengthMostSignificantByte(byte b) { return b < 08 ? b < 02 ? b < 01 ? 0 : 1 : b < 04 ? 2 : 3 : b < 32 ? b < 16 ? 4 : 5 : b < 64 ? 6 : 7; } private static Xint MTP(Xint U, Xint V) { return MTP(U, V, Xint.Max(U.Sign * U, V.Sign * V).ToByteArray().Length << 3); } private static Xint MTP(Xint U, Xint V, int n) { if (n <= 3000) return U * V; if (n <= 6000) return TC2(U, V, n); if (n <= 10000) return TC3(U, V, n); if (n <= 40000) return TC4(U, V, n); return TC2P(U, V, n); } private static Xint MTPr(Xint U, Xint V, int n) { if (n <= 3000) return U * V; if (n <= 6000) return TC2(U, V, n); if (n <= 10000) return TC3(U, V, n); return TC4(U, V, n); } private static Xint TC2(Xint U1, Xint V1, int n) { n >>= 1; Xint Mask = (Xint.One << n) - 1; Xint U0 = U1 & Mask; U1 >>= n; Xint V0 = V1 & Mask; V1 >>= n; Xint P0 = MTPr(U0, V0, n); Xint P2 = MTPr(U1, V1, n); return ((P2 << n) + (MTPr(U0 + U1, V0 + V1, n) - (P0 + P2)) << n) + P0; } private static Xint TC3(Xint U2, Xint V2, int n) { n = (int)((long)(n) * 0x55555556 >> 32); // n /= 3; Xint Mask = (Xint.One << n) - 1; Xint U0 = U2 & Mask; U2 >>= n; Xint U1 = U2 & Mask; U2 >>= n; Xint V0 = V2 & Mask; V2 >>= n; Xint V1 = V2 & Mask; V2 >>= n; Xint W0 = MTPr(U0, V0, n); Xint W4 = MTPr(U2, V2, n); Xint P3 = MTPr((((U2 << 1) + U1) << 1) + U0, (((V2 << 1) + V1 << 1)) + V0, n); U2 += U0; V2 += V0; Xint P2 = MTPr(U2 - U1, V2 - V1, n); Xint P1 = MTPr(U2 + U1, V2 + V1, n); Xint W2 = (P1 + P2 >> 1) - (W0 + W4); Xint W3 = W0 - P1; W3 = ((W3 + P3 - P2 >> 1) + W3) / 3 - (W4 << 1); Xint W1 = P1 - (W4 + W3 + W2 + W0); return ((((W4 << n) + W3 << n) + W2 << n) + W1 << n) + W0; } private static Xint TC4(Xint U3, Xint V3, int n) { n >>= 2; Xint Mask = (Xint.One << n) - 1; Xint U0 = U3 & Mask; U3 >>= n; Xint U1 = U3 & Mask; U3 >>= n; Xint U2 = U3 & Mask; U3 >>= n; Xint V0 = V3 & Mask; V3 >>= n; Xint V1 = V3 & Mask; V3 >>= n; Xint V2 = V3 & Mask; V3 >>= n; Xint W0 = MTPr(U0, V0, n); // 0 U0 += U2; U1 += U3; V0 += V2; V1 += V3; Xint P1 = MTPr(U0 + U1, V0 + V1, n); // 1 Xint P2 = MTPr(U0 - U1, V0 - V1, n); // -1 U0 += 3 * U2; U1 += 3 * U3; V0 += 3 * V2; V1 += 3 * V3; Xint P3 = MTPr(U0 + (U1 << 1), V0 + (V1 << 1), n); // 2 Xint P4 = MTPr(U0 - (U1 << 1), V0 - (V1 << 1), n); // -2 Xint P5 = MTPr(U0 + 12 * U2 + ((U1 + 12 * U3) << 2), V0 + 12 * V2 + ((V1 + 12 * V3) << 2), n); // 4 Xint W6 = MTPr(U3, V3, n); // inf Xint W1 = P1 + P2; Xint W4 = (((((P3 + P4) >> 1) - (W1 << 1)) / 3 + W0) >> 2) - 5 * W6; Xint W2 = (W1 >> 1) - (W6 + W4 + W0); P1 = P1 - P2; P4 = P4 - P3; Xint W5 = ((P1 >> 1) + (5 * P4 + P5 - W0 >> 4) - ((((W6 << 4) + W4) << 4) + W2)) / 45; W1 = ((P4 >> 2) + (P1 << 1)) / 3 + (W5 << 2); Xint W3 = (P1 >> 1) - (W1 + W5); return ((((((W6 << n) + W5 << n) + W4 << n) + W3 << n) + W2 << n) + W1 << n) + W0; } private static Xint TC2P(Xint A, Xint B, int n) { n >>= 1; Xint Mask = (Xint.One << n) - 1; Xint[] U = new Xint[3]; U[0] = A & Mask; A >>= n; U[2] = A; U[1] = U[0] + A; Xint[] V = new Xint[3]; V[0] = B & Mask; B >>= n; V[2] = B; V[1] = V[0] + B; Xint[] P = new Xint[3]; Parallel.For(0, 3, (int i) => P[i] = MTPr(U[i], V[i], n)); return ((P[2] << n) + P[1] - (P[0] + P[2]) << n) + P[0]; } private static int fL2(int i) { return i < 1 << 15 ? i < 1 << 07 ? i < 1 << 03 ? i < 1 << 01 ? i < 1 << 00 ? -1 : 00 : i < 1 << 02 ? 01 : 02 : i < 1 << 05 ? i < 1 << 04 ? 03 : 04 : i < 1 << 06 ? 05 : 06 : i < 1 << 11 ? i < 1 << 09 ? i < 1 << 08 ? 07 : 08 : i < 1 << 10 ? 09 : 10 : i < 1 << 13 ? i < 1 << 12 ? 11 : 12 : i < 1 << 14 ? 13 : 14 : i < 1 << 23 ? i < 1 << 19 ? i < 1 << 17 ? i < 1 << 16 ? 15 : 16 : i < 1 << 18 ? 17 : 18 : i < 1 << 21 ? i < 1 << 20 ? 19 : 20 : i < 1 << 22 ? 21 : 22 : i < 1 << 27 ? i < 1 << 25 ? i < 1 << 24 ? 23 : 24 : i < 1 << 26 ? 25 : 26 : i < 1 << 29 ? i < 1 << 28 ? 27 : 28 : i < 1 << 30 ? 29 : 30; } private static Stopwatch sw = new Stopwatch(); static void Main() { BNM(1000000, 500000); sw.Restart(); BNM(6400000, 2133333); sw.Stop(); Console.WriteLine("BNM(6.400.000 , 2.133.333)"); Console.WriteLine(sw.ElapsedMilliseconds + " ms"); Console.WriteLine(); sw.Restart(); Xint C = CAT(100); sw.Stop(); Console.WriteLine("Catalan(100)"); Console.WriteLine(sw.ElapsedMilliseconds + " ms"); Console.WriteLine(bL(C) + " bits"); Console.WriteLine(C); Console.WriteLine(); sw.Restart(); C = CAT(100); sw.Stop(); Console.WriteLine("Catalan(100)"); Console.WriteLine(sw.ElapsedMilliseconds + " ms"); Console.WriteLine(bL(C) + " bits"); Console.WriteLine(C); Console.WriteLine(); sw.Restart(); C = CAT(200); sw.Stop(); Console.WriteLine("Catalan(200)"); Console.WriteLine(sw.ElapsedMilliseconds + " ms"); Console.WriteLine(bL(C) + " bits"); Console.WriteLine(C); Console.WriteLine(); sw.Restart(); for (int i = 0; i < 1000; i++) { C = CAT(1000); } sw.Stop(); Console.WriteLine("Catalan(1000)"); Console.WriteLine(sw.ElapsedMilliseconds + " us"); Console.WriteLine(bL(C) + " bits"); Console.WriteLine(C); Console.WriteLine(); sw.Restart(); C = CAT(1000000); sw.Stop(); Console.WriteLine("Catalan(1.000.000)"); Console.WriteLine(sw.ElapsedMilliseconds + " ms"); Console.WriteLine(bL(C) + " bits"); Console.WriteLine(); sw.Restart(); C = CAT(2000000); sw.Stop(); Console.WriteLine("Catalan(2.000.000)"); Console.WriteLine(sw.ElapsedMilliseconds + " ms"); Console.WriteLine(bL(C) + " bits"); Console.ReadLine(); } }
C# , System.Numerics, Multiplication, Karatsuba, Toom Cook, Division, Burnikel, Ziegler, Factorial, Luschny, Square Root, Zimmermann, Choose, Binomial Coefficient, Permutation, Combination, Eratosthenes, Primes, Fibonacci, Lucas, Pell, Catalan, Fast Random Number Generator, Overton
2012/02/24
Binomial Coefficient part 2, Catalan Numbers
Subscribe to:
Posts (Atom)