// Lucas(1000000) in 55 mS (Athlon X4 640, XP, 2GB) // http://gmplib.org/manual/Lucas-Numbers-Algorithm.html#Lucas-Numbers-Algorithm // // mpz_lucnum2_ui derives a pair of Lucas numbers from a pair // of Fibonacci numbers with the following simple formulas. // // L[k] = F[k] + 2*F[k-1] // L[k-1] = 2*F[k] - F[k-1] // // mpz_lucnum_ui is only interested in L[n], and some work can be saved. // Trailing zero bits on n can be handled with a single square each. // // L[2k] = L[k]^2 - 2*(-1)^k // // And the lowest 1 bit can be handled with one multiply of a pair of // Fibonacci numbers, similar to what mpz_fib_ui does. // // L[2k+1] = 5*F[k-1]*(2*F[k]+F[k-1]) - 4*(-1)^k // Results: // // mS(Lucs(n)) / mS(Fibs(n)) ~ 1.00 // mS(Luc(2n+1)) / mS(Fib(2n+1)) ~ 1.00 // mS(Luc(2n)) / mS(Fib(2n)) ~ 0.76 // mS(Luc(n)) / ms(Fib(n)) ~ 0.88 // mS(Lucs(n)) / ms(Luc(n)) ~ 1.55 using Xint = System.Numerics.BigInteger; using System.Threading.Tasks; using System.Diagnostics; using System; class Lucas { private static int[] lucSmall = { 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349 }; public static Xint[] Lucs(int n) // { L(n), L(n + 1) } { if (n < 31) return new Xint[2] { lucSmall[n++], lucSmall[n] }; Xint[] F = Fibs(n); return new Xint[2] { 2 * F[1] - F[0], F[1] + 2 * F[0] }; } public static Xint Luc(int n) // L(n) { if (n < 32) return lucSmall[n]; if ((n & 1) == 1) return Luc_n_is_odd(n); int z = fL2(n & -n); // trailing zeros int y = fL2(n) - z - 4; if (y < 0) { z += y; Xint L = lucSmall[n >> z]; for (; z > 0; z--) L = SQ(L) - 2; return L; } else { Xint L = SQ(Luc_n_is_odd(n >> z)) + 2; for (; z > 1; z--) L = SQ(L) - 2; return L; } } private static Xint Luc_n_is_odd(int n) { n = n / 2 - 1; Xint[] F = Fibs(n); return 4 - 8 * (n & 1) + MTP(5 * F[0], 2 * F[1] + F[0]); } private static int[] fibSmall = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578 }; public static Xint[] Fibs(int n) // { F(n), F(n + 1) } { if (n < 33) return new Xint[2] { fibSmall[n++], fibSmall[n] }; n++; int i = fL2(n) - 4; int m = n >> i; Xint[] F = { fibSmall[m - 1], fibSmall[m] }; m = ((1 << i) & n) >> i; for (--i; i >= 0; i--) { F = new Xint[2] { SQ(F[0]), SQ(F[1]) }; F = new Xint[2] { F[1] + F[0], 2 - 4 * m + 4 * F[1] - F[0] }; m = (1 << i & n) >> i; F[1 - m] = F[1] - F[0]; } return F; } public static Xint Fib(int n) // F(n) { if (n < 34) return fibSmall[n]; n++; int i = fL2(n) - 4; int m = n >> i; Xint[] F = { fibSmall[m - 1], fibSmall[m] }; m = ((1 << i) & n) >> i; for (--i; i > 0; i--) { F = new Xint[2] { SQ(F[0]), SQ(F[1]) }; F = new Xint[2] { F[1] + F[0], 2 - 4 * m + 4 * F[1] - F[0] }; m = ((1 << i) & n) >> i; F[1 - m] = F[1] - F[0]; } return (n & 1) == 0 ? 2 - 4 * m + MTP(3 * F[1] + F[0], F[1] - F[0]) : MTP(F[1] + 2 * F[0], F[1]); } private static Stopwatch sw = new Stopwatch(); static void Main() { Luc(1000000); for (int i = 0; i < 10; i++) { sw.Restart(); Luc(1000000); sw.Stop(); Console.WriteLine(sw.ElapsedMilliseconds); } Console.ReadLine(); } // use the easy to copy faster versions: // http://bigintegers.blogspot.com/2011/fibonacci-numbers-part-1.html private static Xint MTP(Xint U, Xint V) { return U * V; } private static Xint SQ(Xint U) { return U * U; } private static int fL2(int n) { int i = -1; while (n > 0) { i++; n /= 2; } return i; } }
C# , System.Numerics, Multiplication, Karatsuba, Toom Cook, Division, Burnikel, Ziegler, Factorial, Luschny, Square Root, Zimmermann, Choose, Binomial Coefficient, Permutation, Combination, Eratosthenes, Primes, Fibonacci, Lucas, Pell, Catalan, Fast Random Number Generator, Overton
2011/09/18
Lucas Numbers
2011/09/05
Inverse Fibonacci filter(1/30.000.000)
// Another simple test for Fibonacci numbers: // Take the repeated digit sum of a Fibonacci number. // F11=89 8+9=17 1+7=8 // The repeated digit sum for odd Fibonacci numbers never is 2 or 7. // Why? I asked Dr Math: // http://mathforum.org/dr.math/ // The repeated digit sum is the same as taking the remainder after division by 9. // Next "proof": // F%9 // F0 0 0------<---- // F1 1 1--<-- | // F2 1 1 | | // F3 2 2 | | // F4 3 3 | | // F5 5 5 | | // F6 8 8 | | // F7 13 4 | | // F8 21 3 | | // F9 34 7 | | // F10 55 1 | | // F11 89 8 | | (F(n+2))%9 = ( (F(n+1))%9 + (F(n))%9 ) % 9 // F12 144 0 | | // F13 233 8 | | // F14 377 8 | | 377%9 = 8 // F15 610 7 | | 610%9 = 7 // F16 987 6 | | 987%9 = 377%9 + 610%9 = (8+7)%9=6 // F17 1597 4 | | // F18 2584 1 | | // F19 4181 5 | | // F20 6765 6 | | // F21 10946 2 | | // F22 17711 8 | | // F23 28657 1-->-- | // F24 46368 0------>---- // Division by 8 gives 6 different remainders, // 0%8=0, 1%8=1, 1%8=1, 2%8=2, 3%8=3, 5%8=5, 8%8=0, 5%8=5, 5%8=5, // 10%8=2,7%8=7, 9%8=1, 8%8=0....6 different remainders(0,1,2,3,5,7) // Division by 11 gives 7 different remainders. // Division by 18 gives 11 different remainders. // Division by F46 gives 66 different remainders. // Which means the chance a number is a Fibonacci number // becomes about 1 to 30.000.000(~F46/66). // +-----------------------------------+ // | | different | // | devisor | remainders | // |----------------------|------------| // | 8 | F6 | 6 | // | 11 | L5 | 7 | // | 18 | L6 | 11 | // | 21 | F8 | 9 | // | 29 | L7 | 10 | 10/29 < 9/21 // | 38 | F18/68 | 13 | // | 47 | L8 | 15 | // | 48 | F12/3 | 15 | // | 55 | F10 | 12 | 12*48 < 15*55 // | ..... | .... | .. | // | ........ | ..... | .. | // | 1201881744 | L45/2 | 69 | // | 1268860318 | F56/147 | 67 | // | 1536404311 | L55/199 | 81 | // | 1602508992 | F48/3 | 69 | // | 1836311903 | F46 | 66 | // +-----------------------------------+ // The devisors found are closely related to the closely related // Fibonacci and Lucas numbers, see the table below. // F12(1,2,3) is F12/1, F12/2, F12/3 is 144, 72, 48 // // +--------------------------------------------------------------------+ // | F6(1) | F32(1,3,7,21,47) | // | F8(1) | F34(1) | // | F10(1) | F36(1,2,3,4,6,8,9,18,24,48,51) | // | F12(1,2,3) | F38(1) | // | F14(1) | F39(2) | // | F16(1,3,7) | F40(3,5,7,11,15,21,35,55) | // | F18(1,2) | F42(1,2,4,8,26) | // | F20(1,3) | F44(1,3) | // | F22(1) | F46(1,139) | // | F24(1,2,3,4,7,8,9,48) | F48(3,4,6,7,8,9,14,18,21,23,24,28,36,47, | // | F26(1) | 48,56,92,94,96,139,144,161,168,329) | // | F27(2) | F50(11,25,55) | // | F28(1,3) | F54(436,872) | // | F30(1,2,4,5,8,10,20,22) | F56(147) | // |-------------------------|------------------------------------------| // | L5(1) | L24(1) | // | L6(1) | L25(1,7,11) | // | L7(1) | L27(1,2,4) | // | L8(1) | L28(1) | // | L9(1,2) | L29(1) | // | L10(1) | L31(1) | // | L11(1) | L33(1,2,4) | // | L12(1) | L34(1) | // | L13(1) | L35(1,29,71) | // | L14(1) | L36(1) | // | L15(1) | L37(1) | // | L16(1) | L39(1,2,4) | // | L17(1) | L41(1) | // | L18(1) | L43(1) | // | L19(1) | L45(2,4,11,19,31,38,76,124,181,209) | // | L21(1,2,4) | L49(29) | // | L22(1) | L55(199) | // | L23(1) | | // +--------------------------------------------------------------------+ // // F24/48=L12*3, F32/47=L16*21, probably there are more. // For X being a (pseudo) random number with 16.000.000 bits, // invFib(X) took 78 mS, now it takes less than 6 mS. using Xint = System.Numerics.BigInteger; using System.Threading.Tasks; using System.Diagnostics; using System; class inverseFibonacci { private static double c0 = Math.Log(Math.Sqrt(5)); private static double c1 = Math.Log(Math.Sqrt(5) + 1) - Math.Log(2); private const double c2 = 1.0157640563849244; private const double c3 = 35.73932166425341; private static int invFib(Xint X) { if (X <= int.MaxValue) switch ((int)X) { case 0: return 0; case 2: return 3; case 3: return 4; case 5: return 5; case 8: return 6; case 13: return 7; case 21: return 8; case 34: return 9; case 55: return 10; case 89: return 11; case 144: return 12; case 233: return 13; case 377: return 14; case 610: return 15; case 987: return 16; case 1597: return 17; case 2584: return 18; case 4181: return 19; case 6765: return 20; case 10946: return 21; case 17711: return 22; case 28657: return 23; case 46368: return 24; case 75025: return 25; case 121393: return 26; case 196418: return 27; case 317811: return 28; case 514229: return 29; case 832040: return 30; case 1346269: return 31; case 2178309: return 32; case 3524578: return 33; case 5702887: return 34; case 9227465: return 35; case 14930352: return 36; case 24157817: return 37; case 39088169: return 38; case 63245986: return 39; case 102334155: return 40; case 165580141: return 41; case 267914296: return 42; case 433494437: return 43; case 701408733: return 44; case 1134903170: return 45; case 1836311903: return 46; default: return -1; } if (X.IsEven) { int x = (int)(X & 31); if ((x != 2) && ((x & 7) != 0)) return -1; } int r = (int)Xint.Remainder(X, 1836311903); if ((r != 0) && (r != 1) && (r != 1134903170) && (r != 2) && (r != 5) && (r != 13) && (r != 34) && (r != 89) && (r != 233) && (r != 610) && (r != 1597) && (r != 4181) && (r != 10946) && (r != 28657) && (r != 75025) && (r != 196418) && (r != 514229) && (r != 1346269) && (r != 3524578) && (r != 9227465) && (r != 24157817) && (r != 63245986) && (r != 165580141) && (r != 433494437) && (r != 3) && (r != 8) && (r != 21) && (r != 55) && (r != 144) && (r != 377) && (r != 987) && (r != 2584) && (r != 6765) && (r != 17711) && (r != 46368) && (r != 121393) && (r != 317811) && (r != 832040) && (r != 2178309) && (r != 5702887) && (r != 14930352) && (r != 39088169) && (r != 102334155) && (r != 267914296) && (r != 701408733) && (r != 1568397607) && (r != 1733977748) && (r != 1797223734) && (r != 1821381551) && (r != 1830609016) && (r != 1834133594) && (r != 1835479863) && (r != 1835994092) && (r != 1836190510) && (r != 1836265535) && (r != 1836294192) && (r != 1836305138) && (r != 1836309319) && (r != 1836310916) && (r != 1836311526) && (r != 1836311759) && (r != 1836311848) && (r != 1836311882) && (r != 1836311895) && (r != 1836311900) && (r != 1836311902)) return -1; double m = (Xint.Log(X) + c0) / c1; if (m > int.MaxValue - 1) return -2; int n = (int)Math.Round(m); m = Math.Abs(n - m); if (m > 9.07086593448401E-07) return -1; if (n < 69) return m < 7.105427357602E-15 ? n : -1; if (n < 129) return m < 1.4210854715203E-14 && isFib(X, n) ? n : -1; if (n < 169) return m < 2.8421709430405E-14 && isFib(X, n) ? n : -1; if (n < 338) return m < 5.6843418860809E-14 && isFib(X, n) ? n : -1; if (n < 1026) return m < 1.13686837721617E-13 && isFib(X, n) ? n : -1; if (n < 1087) return m < 2.27373675443233E-13 && isFib(X, n) ? n : -1; if (n < 4120) return m < 4.54747350886465E-13 && isFib(X, n) ? n : -1; if (n < 7593) return m < 9.09494701772929E-13 && isFib(X, n) ? n : -1; if (n < 8522) return m < 1.81898940354587E-12 && isFib(X, n) ? n : -1; if (n < 17136) return m < 3.63797880709172E-12 && isFib(X, n) ? n : -1; if (n < 35166) return m < 7.27595761418344E-12 && isFib(X, n) ? n : -1; if (n < 131083) return m < 1.45519152283670E-11 && isFib(X, n) ? n : -1; if (n < 259737) return m < 2.91038304567338E-11 && isFib(X, n) ? n : -1; if (n < 272394) return m < 5.82076609134675E-11 && isFib(X, n) ? n : -1; if (n < 1048589) return m < 1.16415321826936E-10 && isFib(X, n) ? n : -1; if (n < 1823140) return m < 2.32830643653871E-10 && isFib(X, n) ? n : -1; if (n < 2179038) return m < 4.65661287307740E-10 && isFib(X, n) ? n : -1; if (n < 8388610) return m < 9.31322574615480E-10 && isFib(X, n) ? n : -1; if (n < 14011307) return m < 1.86264514923097E-09 && isFib(X, n) ? n : -1; if (n < 24678101) return m < 3.72529029846192E-09 && isFib(X, n) ? n : -1; return m < Math.Pow(Math.E, c2 * Math.Log(n) - c3) && isFib(X, n) ? n : -1; } private static bool isFib(Xint X, int n) { for (int i = 3; i < 34; i++) if (n % i == 0) if (Xint.Remainder(X, fibSmall[i]) > 0) return false; return X == Fib(n) ? true : false; } private static int[] fibSmall = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578 }; public static Xint Fib(int n) // returns F(n) { if (n < 34) return fibSmall[n]; n++; int i = fL2(n) - 4; int m = n >> i; Xint[] F = { fibSmall[m - 1], fibSmall[m] }; m = ((1 << i) & n) >> i; for (--i; i > 0; i--) { F = new Xint[2] { SQ(F[0]), SQ(F[1]) }; F = new Xint[2] { F[1] + F[0], 4 * F[1] - F[0] + (2 - 4 * m) }; m = ((1 << i) & n) >> i; F[1 - m] = F[1] - F[0]; } if ((n & 1) == 1) return MTP(F[1] + 2 * F[0], F[1]); return MTP(3 * F[1] + F[0], F[1] - F[0]) + (2 - 4 * m); } // use the easy to copy faster versions: // http://bigintegers.blogspot.com/2011/fibonacci-numbers-part-1.html private static Xint MTP(Xint U, Xint V) { return U * V; } private static Xint SQ(Xint U) { return U * U; } private static int fL2(int n) { int i = -1; while (n > 0) { i++; n /= 2; } return i; } private static Stopwatch sw = new Stopwatch(); static void Main() { Xint X = RND(16000000); invFib(X); sw.Restart(); for (int i = 0; i < 100; i++) { if (invFib(X) != -1) Console.WriteLine(i); } sw.Stop(); Console.WriteLine(sw.ElapsedMilliseconds); Console.ReadLine(); } private static int seed; public static Xint RND(int n) { if (n < 2) return n; if (seed == int.MaxValue) seed = 0; else seed++; Random rand = new Random(seed); byte[] bytes = new byte[(n + 15) / 8]; rand.NextBytes(bytes); int i = bytes.Length - 1; bytes[i] = 0; n = i * 8 - n; i--; bytes[i] >>= n; bytes[i] |= (byte)(128 >> n); return new Xint(bytes); } }
Subscribe to:
Posts (Atom)