// Another abbreviation // BNM(5,2) = 5! / 2! / (5-2)! = 10 binomial coefficient // A sieve of Eratosthenes is used to get the primes, // GetBnmPrimes(30,15) = {3,3,5,17,19,23,29} , 7 increasing numbers. // floorLog2(7) = fL2(7) = 2 // 1 << fL2(7) = 4 // BnmSpecialProduct changes the array into // {17,3*19,3*23,5*29} = {17,57,69,145} , 4 increasing numbers. // BnmProduct changes it into // {17*145,57*69} = {2465,3933} // BnmProduct finally changes it into // {2465*3933} = {9694845} // A small prime, 2 , still has to be handled, // its power factor is getBnmPower2(30,15) = 4 // 9694845 * 2^4 = 9694845 << 4 = 155117520 // After a few iterations of BnmProduct, // the multiplicands are of equal, or almost equal, bitlength, // a prerequisite to use Karatsuba etc. effectively. // using System; using System.Collections; using System.Collections.Generic; using System.Diagnostics; using System.Threading.Tasks; using Xint = System.Numerics.BigInteger; class Program { private static Stopwatch sw = new Stopwatch(); static void Main() { sw.Restart(); BNM(6400000, 2133333); sw.Stop(); Console.WriteLine(sw.ElapsedMilliseconds); // BNM.exe 3880 ms sw.Restart(); Console.ReadLine(); } public static Xint BNM(int n, int k) { if (k > n) return 0; if ((k == 0) | (n == k)) return 1; if ((k == 1) | (n == k + 1)) return n; Xint[] P = GetBnmPrimes(n, k); int i = P.Length; int j = 1 << fL2(i); if (i != j) { P = BnmSpecialProduct(P, i, j); i = j; } while (i > 1) { P = BnmProduct(P, i); i >>= 1; } return P[0] << getBnmPower2(n, k); } private static Xint[] GetBnmPrimes(int n, int k) { int m = ((n & 1) + n) >> 1; // Eratosthenes BitArray x = new BitArray(m + 1); int i = 4, p = 3, q = 4; for (; q < m; q += p >> 1 << 2) { if (!x[q]) { x[q] = true; for (i = q + p; i < m; i += p) x[i] = true; } p += 2; } List<Xint> Primes = new List<Xint>(); int j; // prime power factorization binomial for (i = 1; i < m; i++) if (!x[i]) { p = i * 2 | 1; q = n / p; j = q; while (q >= p) { q /= p; j += q; } q = k / p; j -= q; while (q >= p) { q /= p; j -= q; } q = (n - k) / p; j -= q; while (q >= p) { q /= p; j -= q; } for (q = 0; q < j; q++) Primes.Add(p); } return Primes.ToArray(); } private static int getBnmPower2(int n, int k) { int m = n - k; int i = (n >>= 1); while (n > 1) i += (n >>= 1); while (m > 1) i -= (m >>= 1); while (k > 1) i -= (k >>= 1); return i; } private static Xint[] BnmSpecialProduct(Xint[] P, int i, int j) { Xint[] Q = new Xint[j]; int m = i - j; i = j; j -= m; int n = 0; for (; n < j; n++) { Q[n] = P[m]; m++; } j = 0; for (; n < i; n++) { Q[n] = P[m] * P[j]; j++; m++; } return Q; } private static Xint[] BnmProduct(Xint[] P, int i) { int k = i >> 1; Xint[] Q = new Xint[k]; for (int j = 0; j < k; j++) { i--; Q[j] = MTP(P[j], P[i]); } return Q; } private static Xint MTP(Xint U, Xint V) { return MTP(U, V, Xint.Max(U.Sign * U, V.Sign * V).ToByteArray().Length << 3); } private static Xint MTP(Xint U, Xint V, int n) { if (n <= 3000) return U * V; if (n <= 6000) return TC2(U, V, n); if (n <= 10000) return TC3(U, V, n); if (n <= 40000) return TC4(U, V, n); return TC2P(U, V, n); } private static Xint MTPr(Xint U, Xint V, int n) { if (n <= 3000) return U * V; if (n <= 6000) return TC2(U, V, n); if (n <= 10000) return TC3(U, V, n); return TC4(U, V, n); } private static Xint TC2(Xint U1, Xint V1, int n) { n >>= 1; Xint Mask = (Xint.One << n) - 1; Xint U0 = U1 & Mask; U1 >>= n; Xint V0 = V1 & Mask; V1 >>= n; Xint P0 = MTPr(U0, V0, n); Xint P2 = MTPr(U1, V1, n); return ((P2 << n) + (MTPr(U0 + U1, V0 + V1, n) - (P0 + P2)) << n) + P0; } private static Xint TC3(Xint U2, Xint V2, int n) { n = (int)((long)(n) * 0x55555556 >> 32); // n /= 3; Xint Mask = (Xint.One << n) - 1; Xint U0 = U2 & Mask; U2 >>= n; Xint U1 = U2 & Mask; U2 >>= n; Xint V0 = V2 & Mask; V2 >>= n; Xint V1 = V2 & Mask; V2 >>= n; Xint W0 = MTPr(U0, V0, n); Xint W4 = MTPr(U2, V2, n); Xint P3 = MTPr((((U2 << 1) + U1) << 1) + U0, (((V2 << 1) + V1 << 1)) + V0, n); U2 += U0; V2 += V0; Xint P2 = MTPr(U2 - U1, V2 - V1, n); Xint P1 = MTPr(U2 + U1, V2 + V1, n); Xint W2 = (P1 + P2 >> 1) - (W0 + W4); Xint W3 = W0 - P1; W3 = ((W3 + P3 - P2 >> 1) + W3) / 3 - (W4 << 1); Xint W1 = P1 - (W4 + W3 + W2 + W0); return ((((W4 << n) + W3 << n) + W2 << n) + W1 << n) + W0; } private static Xint TC4(Xint U3, Xint V3, int n) { n >>= 2; Xint Mask = (Xint.One << n) - 1; Xint U0 = U3 & Mask; U3 >>= n; Xint U1 = U3 & Mask; U3 >>= n; Xint U2 = U3 & Mask; U3 >>= n; Xint V0 = V3 & Mask; V3 >>= n; Xint V1 = V3 & Mask; V3 >>= n; Xint V2 = V3 & Mask; V3 >>= n; Xint W0 = MTPr(U0, V0, n); // 0 U0 += U2; U1 += U3; V0 += V2; V1 += V3; Xint P1 = MTPr(U0 + U1, V0 + V1, n); // 1 Xint P2 = MTPr(U0 - U1, V0 - V1, n); // -1 U0 += 3 * U2; U1 += 3 * U3; V0 += 3 * V2; V1 += 3 * V3; Xint P3 = MTPr(U0 + (U1 << 1), V0 + (V1 << 1), n); // 2 Xint P4 = MTPr(U0 - (U1 << 1), V0 - (V1 << 1), n); // -2 Xint P5 = MTPr(U0 + 12 * U2 + ((U1 + 12 * U3) << 2), V0 + 12 * V2 + ((V1 + 12 * V3) << 2), n); // 4 Xint W6 = MTPr(U3, V3, n); // inf Xint W1 = P1 + P2; Xint W4 = (((((P3 + P4) >> 1) - (W1 << 1)) / 3 + W0) >> 2) - 5 * W6; Xint W2 = (W1 >> 1) - (W6 + W4 + W0); P1 = P1 - P2; P4 = P4 - P3; Xint W5 = ((P1 >> 1) + (5 * P4 + P5 - W0 >> 4) - ((((W6 << 4) + W4) << 4) + W2)) / 45; W1 = ((P4 >> 2) + (P1 << 1)) / 3 + (W5 << 2); Xint W3 = (P1 >> 1) - (W1 + W5); return ((((((W6 << n) + W5 << n) + W4 << n) + W3 << n) + W2 << n) + W1 << n) + W0; } private static Xint TC2P(Xint A, Xint B, int n) { n >>= 1; Xint Mask = (Xint.One << n) - 1; Xint[] U = new Xint[3]; U[0] = A & Mask; A >>= n; U[2] = A; U[1] = U[0] + A; Xint[] V = new Xint[3]; V[0] = B & Mask; B >>= n; V[2] = B; V[1] = V[0] + B; Xint[] P = new Xint[3]; Parallel.For(0, 3, (int i) => P[i] = MTPr(U[i], V[i], n)); return ((P[2] << n) + P[1] - (P[0] + P[2]) << n) + P[0]; } private static int fL2(int i) { return i < 1 << 15 ? i < 1 << 07 ? i < 1 << 03 ? i < 1 << 01 ? i < 1 << 00 ? -1 : 00 : i < 1 << 02 ? 01 : 02 : i < 1 << 05 ? i < 1 << 04 ? 03 : 04 : i < 1 << 06 ? 05 : 06 : i < 1 << 11 ? i < 1 << 09 ? i < 1 << 08 ? 07 : 08 : i < 1 << 10 ? 09 : 10 : i < 1 << 13 ? i < 1 << 12 ? 11 : 12 : i < 1 << 14 ? 13 : 14 : i < 1 << 23 ? i < 1 << 19 ? i < 1 << 17 ? i < 1 << 16 ? 15 : 16 : i < 1 << 18 ? 17 : 18 : i < 1 << 21 ? i < 1 << 20 ? 19 : 20 : i < 1 << 22 ? 21 : 22 : i < 1 << 27 ? i < 1 << 25 ? i < 1 << 24 ? 23 : 24 : i < 1 << 26 ? 25 : 26 : i < 1 << 29 ? i < 1 << 28 ? 27 : 28 : i < 1 << 30 ? 29 : 30; } private static int bL(Xint U) { byte[] bytes = (U.Sign * U).ToByteArray(); int i = bytes.Length - 1; return i << 3 | bitLengthMostSignificantByte(bytes[i]); } private static int bitLengthMostSignificantByte(byte b) { return b < 08 ? b < 02 ? b < 01 ? 0 : 1 : b < 04 ? 2 : 3 : b < 32 ? b < 16 ? 4 : 5 : b < 64 ? 6 : 7; } }
C# , System.Numerics, Multiplication, Karatsuba, Toom Cook, Division, Burnikel, Ziegler, Factorial, Luschny, Square Root, Zimmermann, Choose, Binomial Coefficient, Permutation, Combination, Eratosthenes, Primes, Fibonacci, Lucas, Pell, Catalan, Fast Random Number Generator, Overton
2010/12/19
Binomial Coefficient, n over k, Choose(n,k)
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment